Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 344
1.
Theor Appl Genet ; 137(6): 121, 2024 May 06.
Article En | MEDLINE | ID: mdl-38709317

KEY MESSAGE: This study precisely mapped and validated a quantitative trait locus (QTL) located on chromosome 4B for flag leaf angle in wheat. Flag leaf angle (FLANG) is closely related to crop architecture and yield. We previously identified the quantitative trait locus (QTL) QFLANG-4B for FLANG on chromosome 4B, located within a 14-cM interval flanked by the markers Xbarc20 and Xzyh357, using a mapping population of recombinant inbred lines (RILs) derived from a cross between Nongda3331 (ND3331) and Zang1817. In this study, we fine-mapped QFLANG-4B and validated its associated genetic effect. We developed a BC3F3 population using ND3331 as the recurrent parent through marker-assisted selection, as well as near-isogenic lines (NILs) by selfing BC3F3 plants carrying different heterozygous segments for the QFLANG-4B region. We obtained eight recombinant types for QFLANG-4B, narrowing its location down to a 5.3-Mb region. This region contained 76 predicted genes, 7 of which we considered to be likely candidate genes for QFLANG-4B. Marker and phenotypic analyses of individual plants from the secondary mapping populations and their progeny revealed that the FLANG of the ND3331 allele is significantly higher than that of the Zang1817 allele in multiple environments. These results not only provide a basis for the map-based cloning of QFLANG-4B, but also indicate that QFLANG-4B has great potential for marker-assisted selection in wheat breeding programs designed to improve plant architecture and yield.


Chromosome Mapping , Phenotype , Plant Leaves , Quantitative Trait Loci , Triticum , Triticum/genetics , Triticum/growth & development , Triticum/anatomy & histology , Chromosome Mapping/methods , Plant Leaves/anatomy & histology , Plant Leaves/genetics , Plant Leaves/growth & development , Genetic Markers , Chromosomes, Plant/genetics , Plant Breeding , Genetic Linkage , Genes, Plant
2.
Theor Appl Genet ; 137(5): 110, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38656338

KEY MESSAGE: We developed T1AL·1PS and T1AS·1PL Robertsonian translocations by breakage-fusion mechanism based on wheat-A. cristatum 1P(1A) substitution line with smaller leaf area, shorter plant height, and other excellent agronomic traits Agropyron cristatum, a wild relative of wheat, is a valuable germplasm resource for improving wheat genetic diversity and yield. Our previous study confirmed that the A. cristatum chromosome 1P carries alien genes that reduce plant height and leaf size in wheat. Here, we developed T1AL·1PS and T1AS·1PL Robertsonian translocations (RobTs) by breakage-fusion mechanism based on wheat-A. cristatum 1P (1A) substitution line II-3-1c. Combining molecular markers and cytological analysis, we identified 16 spontaneous RobTs from 911 F2 individuals derived from the cross of Jimai22 and II-3-1c. Fluorescence in situ hybridization (FISH) was applied to detect the fusion structures of the centromeres in wheat and A. cristatum chromosomes. Resequencing results indicated that the chromosomal junction point was located at the physical position of Triticum aestivum chromosome 1A (212.5 Mb) and A. cristatum chromosome 1P (230 Mb). Genomic in situ hybridization (GISH) in pollen mother cells showed that the produced translocation lines could form stable ring bivalent. Introducing chromosome 1PS translocation fragment into wheat significantly increased the number of fertile tillers, grain number per spike, and grain weight and reduced the flag leaf area. However, introducing chromosome 1PL translocation fragment into wheat significantly reduced flag leaf area and plant height with a negative effect on yield components. The pre-breeding of two spontaneous RobTs T1AL·1PS and T1AS·1PL was important for wheat architecture improvement.


Agropyron , Chromosomes, Plant , Plant Breeding , Translocation, Genetic , Triticum , Triticum/genetics , Triticum/growth & development , Triticum/anatomy & histology , Agropyron/genetics , Agropyron/growth & development , Chromosomes, Plant/genetics , In Situ Hybridization, Fluorescence , Phenotype
3.
New Phytol ; 237(5): 1558-1573, 2023 03.
Article En | MEDLINE | ID: mdl-36519272

The wheat flag leaf is the main contributor of photosynthetic assimilates to developing grains. Understanding how canopy architecture strategies affect source strength and yield will aid improved crop design. We used an eight-founder population to investigate the genetic architecture of flag leaf area, length, width and angle in European wheat. For the strongest genetic locus identified, we subsequently created a near-isogenic line (NIL) pair for more detailed investigation across seven test environments. Genetic control of traits investigated was highly polygenic, with colocalisation of replicated quantitative trait loci (QTL) for one or more traits identifying 24 loci. For QTL QFll.niab-5A.1 (FLL5A), development of a NIL pair found the FLL5A+ allele commonly conferred a c. 7% increase in flag and second leaf length and a more erect leaf angle, resulting in higher flag and/or second leaf area. Increased FLL5A-mediated flag leaf length was associated with: (1) longer pavement cells and (2) larger stomata at lower density, with a trend for decreased maximum stomatal conductance (Gsmax ) per unit leaf area. For FLL5A, cell size rather than number predominantly determined leaf length. The observed trade-offs between leaf size and stomatal morphology highlight the need for future studies to consider these traits at the whole-leaf level.


Quantitative Trait Loci , Triticum , Chromosome Mapping , Triticum/anatomy & histology , Quantitative Trait Loci/genetics , Plant Leaves/anatomy & histology , Phenotype , Epidermal Cells
4.
Theor Appl Genet ; 135(12): 4303-4326, 2022 Dec.
Article En | MEDLINE | ID: mdl-36152062

KEY MESSAGE: FHB resistance shared pleiotropic loci with plant height and anther retention. Genomic prediction allows to select for genomic background reducing FHB susceptibility in the presence of the dwarfing allele Rht-D1b. With the high interest for semi-dwarf cultivars in wheat, finding locally adapted resistance sources against Fusarium head blight (FHB) and FHB-neutral reduced height (Rht) genes is of utmost relevance. In this study, 401 genotypes of European origin without/with dwarfing alleles of Rht-D1 and/or Rht24 were analysed across five environments on FHB severity and the morphological traits such as plant height (PH), anther retention (AR), number of spikelets per ear, ear length and ear density. Data were analysed by combined correlation and path analyses, association mapping and coupling single- and multi-trait genome-wide association studies (ST-GWAS and MT-GWAS, respectively) and genomic prediction (GP). All FHB data were corrected for flowering date or heading stage. High genotypic correlation (rg = 0.74) and direct path effect (0.57) were detected between FHB severity and anther retention (AR). Moderate correlation (rg = - 0.55) was found between FHB severity and plant height (PH) with a high indirect path via AR (- 0.31). Indirect selection for FHB resistance should concentrate on AR and PH. ST-GWAS identified 25 quantitative trait loci (QTL) for FHB severity, PH and AR, while MT-GWAS detected six QTL across chromosomes 2A, 4D, 5A, 6B and 7B conveying pleiotropic effects on the traits. Rht-D1b was associated with high AR and FHB susceptibility. Our study identified a promising positively acting pleiotropic QTL on chromosome 7B which can be utilized to improve FHB resistance while reducing PH and AR. Rht-D1b genotypes having a high resistance genomic background exhibited lower FHB severity and AR. The use of GP for estimating the genomic background was more effective than selection of GWAS-detected markers. We demonstrated that GP has a great potential and should be exploited by selecting for semi-dwarf winter wheat genotypes with higher FHB resistance due to their genomic background.


Fusarium , Triticum/genetics , Triticum/anatomy & histology , Chromosome Mapping , Genome-Wide Association Study , Plant Diseases/genetics
5.
PLoS One ; 17(2): e0259413, 2022.
Article En | MEDLINE | ID: mdl-35176021

Durum wheat is the tenth most valuable crop on a global scale. The aim of this study was to compare the phenotypic variation of T. durum accessions of different origin with contemporary spring cultivars of this cereal species. One hundred and two accessions and 12 contemporary cultivars of Triticum durum Desf. as well as Kamut® wheat (T. turanicum), a Triticum species closely related to T. durum, were analyzed. The aim of this study was to describe the degree of variation in the phenotypic traits of grain and selected traits associated with technological quality. The examined genotypes were characterized by considerable phenotypic variation, and they can be a valuable source of material for genetic recombination in durum wheat breeding. The analyzed accessions were characterized by a higher average content of protein (16.48 vs. 14.56%) and wet gluten (38.04 vs. 32.07%), higher Zeleny sedimentation values (69.7 vs. 60.4ml), and higher flour strength (W index values of 404.64 vs. 353.47) than the reference cultivars. The kernels of the evaluated accessions and cultivars did not differ significantly in average crease depth, but significant differences were observed in the values of descriptors directly linked with kernel size, especially kernel image area and minimal Feret diameter. The traits responsible for the processing suitability of grain were more strongly correlated with color descriptors than shape descriptors, which suggests that color parameters can be used to select high-quality breeding material. The analyzed accessions have two major weaknesses, namely relatively low yields (22.6 dt ha-1 on average) and undesirable grain color, indicative of low carotenoid concentration. The accessions deposited in gene banks do not meet the relevant agronomic requirements. However, both grain yield and carotenoid concentration are polygenic traits which can be improved if desirable combinations of QTLs are assembled in breeding lines and cultivars.


Biological Variation, Population , Color , Plant Breeding , Quantitative Trait Loci , Seed Bank/statistics & numerical data , Seeds/genetics , Triticum/genetics , Genes, Plant , Genome, Plant , Genotype , Phenotype , Triticum/anatomy & histology , Triticum/growth & development
6.
Braz. j. biol ; 82: 1-11, 2022. graf, tab
Article En | LILACS, VETINDEX | ID: biblio-1468560

One of the most important traits that plant breeders aim to improve is grain yield which is a highly quantitative trait controlled by various agro-morphological traits. Twelve morphological traits such as Germination Percentage, Days to Spike Emergence, Plant Height, Spike Length, Awn Length, Tillers/Plant, Leaf Angle, Seeds/Spike, Plant Thickness, 1000-Grain Weight, Harvest Index and Days to Maturity have been considered as independent factors. Correlation ,regression, and principal component analysis (PCA) are used to identify the different durum wheat traits, which significantly contribute to the yield. The necessary assumptions required for applying regression modeling have been tested and all the assumptions are satisfied by the observed data. The outliers are detected in the observations of fixed traits and Grain Yield. Some observations are detected as outliers but the outlying observations did not show any influence on the regression fit. For selecting a parsimonious regression model for durum wheat, best subset regression, and stepwise regression techniques have been applied. The best subset regression analysis revealed that Germination Percentage, Tillers/Plant, and Seeds/Spike have a marked increasing effect whereas Plant thickness has a negative effect on durum wheat yield. While stepwise regression analysis identified that the traits, Germination Percentage, Tillers/Plant, and Seeds/Spike significantly contribute to increasing the durum wheat yield. The simple correlation coefficient specified the significant positive correlation of Grain Yield with Germination Percentage, Number of Tillers/Plant, Seeds/Spike, and Harvest Index. These results of correlation analysis directed the importance of morphological characters and their significant positive impact on Grain Yield. [...].


Uma das características mais importantes que os produtores de plantas visam melhorar é o rendimento de grãos, que é uma particularidade altamente quantitativa e controlada por várias características agromorfológicas. Foram considerados 12 traços morfológicos como fatores independentes, como Porcentagem de Germinação, Dias para Emergência da Espiga, Altura da Planta, Comprimento da Espiga, Comprimento da Aresta, Perfilhos /Planta, Ângulo da Folha, Sementes /Espiga, Espessura da Planta, Peso de 1000 Grãos, Índice de Colheita e Dias até a Maturidade. A correlação, regressão e análise de componentes principais (em inglês Principal Component Analysis (PCA)) são usadas para identificar as diferentes características do trigo duro, que contribuem significativamente para o rendimento. As suposições necessárias exigidas para a aplicação da modelagem de regressão foram testadas e todas as suposições são adequadas de acordo com os dados observados. Os outliers são detectados nas observações de características fixas e rendimento de grãos. Algumas observações são detectadas como outliers, mas as observações outliers não mostraram qualquer influência no ajuste da regressão. Para selecionar um modelo de regressão parcimonioso para o trigo duro, foram aplicadas tanto a melhor regressão de subconjunto quanto as técnicas de regressão stepwise. A melhor análise de regressão de subconjunto revelou que a porcentagem de germinação, perfilhos /planta e sementes /espiga tem um efeito de aumento acentuado, enquanto a espessura da planta tem um efeito negativo sobre o rendimento do trigo duro. Enquanto a análise de regressão passo a passo identificou que as características, porcentagem de germinação, perfilhos/planta e sementes /espiga contribuem significativamente para aumentar a produtividade do trigo duro. O coeficiente de correlação simples especificou a correlação positiva significativa do [...].


Regression Analysis , Rainy Season , Models, Statistical , Triticum/anatomy & histology , Triticum/growth & development , Triticum/physiology
7.
BMC Plant Biol ; 21(1): 524, 2021 Nov 10.
Article En | MEDLINE | ID: mdl-34758742

BACKGROUND: Grain size is thought to be a major component of yield in many plant species. Here we set out to understand if knowledge from other cereals such as rice could translate to increased yield gains in wheat and lead to increased nitrogen use efficiency. Previous findings that the overexpression of OsBG1 in rice increased yields while increasing seed size suggest translating gains from rice to other cereals may help to increase yields. RESULTS: The orthologous genes of OsBG1 were identified in wheat. One homoeologous wheat gene was cloned and overexpressed in wheat to understand its role in controlling seed size. Potential alteration in the nutritional profile of the grains were also analyzed in wheat overexpressing TaBG1. It was found that increased TaBG1-A expression could indeed lead to larger seed size but was linked to a reduction in seed number per plant leading to no significant overall increase in yield. Other important components of yield such as biomass or tillering did not change significantly with increased TaBG1-A expression. The nutritional profile of the grain was altered, with a significant decrease in the Zn levels in the grain associated with increased seed size, but Fe and Mn concentrations were unchanged. Protein content of the wheat grain also fell under moderate N fertilization levels but not under deficient or adequate levels of N. CONCLUSIONS: TaBG1 does control seed size in wheat but increasing the seed size per se does not increase yield and may come at the cost of lower concentrations of essential elements as well as potentially lower protein content. Nevertheless, TaBG1 could be a useful target for further breeding efforts in combination with other genes for increased biomass.


Genes, Plant , Seeds/genetics , Triticum/genetics , Biomass , Edible Grain/chemistry , Edible Grain/genetics , Edible Grain/metabolism , Nitrogen/metabolism , Nutritive Value/genetics , Plants, Genetically Modified , Seeds/anatomy & histology , Seeds/chemistry , Seeds/metabolism , Triticum/anatomy & histology , Triticum/chemistry , Triticum/metabolism
8.
Sci Rep ; 11(1): 20953, 2021 10 25.
Article En | MEDLINE | ID: mdl-34697303

The geometric and color features of agricultural material along with related physical properties are critical to characterize and express its physical quality. The experiments were conducted to classify the physical characteristics like size, shape, color and texture and then workout the relationship between manual observations and using image processing techniques for weight and volume of the four wheat refractions i.e. sound, damaged, shriveled and broken grains of wheat variety PBW 725. A flatbed scanner was used to acquire the images and digital image processing method was used to process the images and output of image analysis was compared with the actual measurements data using digital vernier caliper. A linear relationship was observed between the axial dimensions of refractions between manual measurement and image processing method with R2 in the range of 0.798-0.947. The individual kernel weight and thousand grain weight of the refractions were observed to be in the range of 0.021-0.045 and 12.56-46.32 g respectively. Another linear relationship was found between individual kernel weight and projected area estimated using image processing methodology with R2 in the range of 0.841-0.920. The sphericity of the refractions varied in the range of 0.52-0.71. Analyses of the captured images suggest ellipsoid shape with convex geometry while the same observation was recorded by physical measurements also. A linear relationship was observed between the volume of refractions derived from measured dimensions and calculated from image with R2 in the range of 0.845-0.945. Various color and grey level co-variance matrix texture features were extracted from acquired images using the open-source Python programming language and OpenCV library which can exploit different machine and deep learning algorithms to properly classify these refractions.


Image Processing, Computer-Assisted/methods , Triticum/anatomy & histology , Triticum/growth & development , Algorithms , Crops, Agricultural/anatomy & histology , Crops, Agricultural/classification , Crops, Agricultural/growth & development , Machine Learning , Seeds/anatomy & histology , Seeds/classification , Seeds/growth & development , Triticum/classification
9.
BMC Plant Biol ; 21(1): 418, 2021 Sep 13.
Article En | MEDLINE | ID: mdl-34517837

BACKGROUND: Bread wheat (Triticum aestivum L.) is one of the most widely consumed cereal crops, but its complex genome makes it difficult to investigate the genetic effect on important agronomic traits. Genome-wide association (GWA) analysis is a useful method to identify genetic loci controlling complex phenotypic traits. With the RNA-sequencing based gene expression analysis, putative candidate genes governing important agronomic trait can be suggested and also molecular markers can be developed. RESULTS: We observed major quantitative agronomic traits of wheat; the winter survival rate (WSR), days to heading (DTH), days to maturity (DTM), stem length (SL), spike length (SPL), awn length (AL), liter weight (LW), thousand kernel weight (TKW), and the number of seeds per spike (SPS), of 287 wheat accessions from diverse country origins. A significant correlation was observed between the observed traits, and the wheat genotypes were divided into three subpopulations according to the population structure analysis. The best linear unbiased prediction (BLUP) values of the genotypic effect for each trait under different environments were predicted, and these were used for GWA analysis based on a mixed linear model (MLM). A total of 254 highly significant marker-trait associations (MTAs) were identified, and 28 candidate genes closely located to the significant markers were predicted by searching the wheat reference genome and RNAseq data. Further, it was shown that the phenotypic traits were significantly affected by the accumulation of favorable or unfavorable alleles. CONCLUSIONS: From this study, newly identified MTA and putative agronomically useful genes will help to study molecular mechanism of each phenotypic trait. Further, the agronomically favorable alleles found in this study can be used to develop wheats with superior agronomic traits.


Genotype , Phenotype , Quantitative Trait Loci , Seeds/anatomy & histology , Seeds/genetics , Triticum/anatomy & histology , Triticum/genetics , Edible Grain/anatomy & histology , Edible Grain/genetics , Genetic Variation , Genome, Plant , Genome-Wide Association Study
10.
BMC Plant Biol ; 21(1): 417, 2021 Sep 10.
Article En | MEDLINE | ID: mdl-34507551

BACKGROUND: The future productivity of wheat (T. aestivum L.) as the most grown crop worldwide is of utmost importance for global food security. Thousand kernel weight (TKW) in wheat is closely associated with grain architecture-related traits, e.g. kernel length (KL), kernel width (KW), kernel area (KA), kernel diameter ratio (KDR), and factor form density (FFD). Discovering the genetic architecture of natural variation in these traits, identifying QTL and candidate genes are the main aims of this study. Therefore, grain architecture-related traits in 261 worldwide winter accessions over three field-year experiments were evaluated. RESULTS: Genome-wide association analysis using 90K SNP array in FarmCPU model revealed several interesting genomic regions including 17 significant SNPs passing false discovery rate threshold and strongly associated with the studied traits. Four of associated SNPs were physically located inside candidate genes within LD interval e.g. BobWhite_c5872_589 (602,710,399 bp) found to be inside TraesCS6A01G383800 (602,699,767-602,711,726 bp). Further analysis reveals the four novel candidate genes potentially involved in more than one grain architecture-related traits with a pleiotropic effects e.g. TraesCS6A01G383800 gene on 6A encoding oxidoreductase activity was associated with TKW and KA. The allelic variation at the associated SNPs showed significant differences betweeen the accessions carying the wild and mutated alleles e.g. accessions carying C allele of BobWhite_c5872_589, TraesCS6A01G383800 had significantly higher TKW than the accessions carying T allele. Interestingly, these genes were highly expressed in the grain-tissues, demonstrating their pivotal role in controlling the grain architecture. CONCLUSIONS: These results are valuable for identifying regions associated with kernel weight and dimensions and potentially help breeders in improving kernel weight and architecture-related traits in order to increase wheat yield potential and end-use quality.


Genotype , Phenotype , Polymorphism, Single Nucleotide , Seeds/anatomy & histology , Seeds/genetics , Triticum/anatomy & histology , Triticum/genetics , Edible Grain/anatomy & histology , Edible Grain/genetics , Genetic Variation , Genome, Plant , Genome-Wide Association Study , Quantitative Trait Loci
11.
Plant Sci ; 307: 110879, 2021 Jun.
Article En | MEDLINE | ID: mdl-33902847

Glume hairiness or pubescence that occurs in hexaploid common wheat and its relatives at different ploidy levels is a distinct morphological marker. Current knowledge about the genetic control of wheat glume hairiness is based on study of Hg1 (formerly Hg) on chromosome 1AS. Here, we report characterization of a new locus for hairy glume Hg2 in synthetic hexaploid wheat line CIGM86.944. Hg2 was inherited a dominant allele. Bulked segregant analysis and RNA-sequencing (BSR-Seq) was performed on an F2:3 population from cross CIGM86.944 × Shannong 29 (glabrous glume), which localized Hg2 in a 2.02 cM genetic interval corresponding to ∼1.08 Mb (754,001,564-755,082,433 Mb) on chromosome 2BL in the Chinese Spring reference genome. Gene annotation and expression identified TraesCS2B02 G562300.1 encoding diacylglycerol kinase 5 protein and TraesCS2B02 G561400.1 encoding a wound-responsive family protein as possible candidate genes regulating development of glume hairiness. The identification of Hg2 provides new insights into the genetic control of glume hairiness in wheat.


Chromosome Mapping , Genes, Plant , Genetic Markers , Plant Leaves/anatomy & histology , Plant Leaves/genetics , Triticum/anatomy & histology , Triticum/genetics , Phenotype , Ploidies
12.
Int J Mol Sci ; 22(4)2021 Feb 19.
Article En | MEDLINE | ID: mdl-33669605

A detailed study was made of changes in the plant development, morphology, physiology and yield biology of near-isogenic lines of spring durum wheat sown in the field with different plant densities in two consecutive years (2013-2014). An analysis was made of the drought tolerance of isogenic lines selected for yield QTLs (QYld.idw-2B and QYld.idw-3B), and the presence of QTL effects was examined in spring sowings. Comparisons were made of the traits of the isogenic pairs QYld.idw-3B++ and QYld.idw-3B-- both within and between the pairs. Changes in the polyamine content, antioxidant enzyme activity, chlorophyll content of the flag leaf and the normalized difference vegetation index (NDVI) of the plot were monitored in response to drought stress, and the relationship between these components and the yield was analyzed. In the case of moderate stress, differences between the NIL++ and NIL-- pairs appeared in the early dough stage, indicating that the QYld.idw-3B++ QTL region was able to maintain photosynthetic activity for a longer period, resulting in greater grain number and grain weight at the end of the growing period. The chlorophyll content of the flag leaf in phenophases Z77 and Z83 was significantly correlated with the grain number and grain weight of the main spike. The grain yield was greatly influenced by the treatment, while the genotype had a significant effect on the thousand-kernel weight and on the grain number and grain weight of the main spike. When the lines were compared in the non-irrigated treatment, significantly more grains and significantly higher grain weight were observed in the main spike in NIL++ lines, confirming the theory that the higher yields of the QYld.idw-3B++ lines when sown in spring and exposed to drought stress could be attributed to the positive effect of the "Kofa" QTL on chromosome 3B.


Seasons , Stress, Physiological , Triticum/growth & development , Triticum/physiology , Droughts , Genotype , Plant Development , Principal Component Analysis , Triticum/anatomy & histology , Triticum/genetics
13.
Methods Mol Biol ; 2212: 105-120, 2021.
Article En | MEDLINE | ID: mdl-33733353

Reliable methods of phenotype prediction from genomic data play an increasingly important role in many areas of plant and animal breeding. Thus, developing methods that enhance prediction accuracy is of major interest. Here, we provide three methods for this purpose: (1) Genomic Best Linear Unbiased Prediction (GBLUP) as a model just accounting for additive SNP effects; (2) Epistatic Random Regression BLUP (ERRBLUP) as a full epistatic model which incorporates all pairwise SNP interactions, and (3) selective Epistatic Random Regression BLUP (sERRBLUP) as an epistatic model which incorporates a subset of pairwise SNP interactions selected based on their absolute effect sizes or the effect variances, which is computed based on solutions from the ERRBLUP model. We compared the predictive ability obtained from GBLUP, ERRBLUP, and sERRBLUP with genotypes from a publicly available wheat dataset and respective simulated phenotypes. Results showed that sERRBLUP provides a substantial increase in prediction accuracy compared to the other methods when the optimal proportion of SNP interactions is kept in the model, especially when an optimal proportion of SNP interactions is selected based on the SNP interaction effect sizes. All methods described here are implemented in the R-package EpiGP, which is able to process large-scale genomic data in a computationally efficient way.


Epistasis, Genetic , Models, Genetic , Models, Statistical , Phenotype , Quantitative Trait, Heritable , Triticum/genetics , Datasets as Topic , Genetic Association Studies , Genotype , Heterozygote , Plant Breeding/methods , Plant Tumors/genetics , Plant Tumors/microbiology , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Triticum/anatomy & histology , Triticum/metabolism
14.
Plant Cell Environ ; 44(6): 1921-1934, 2021 06.
Article En | MEDLINE | ID: mdl-33629405

Root axial conductance, which describes the ability of water to move through the xylem, contributes to the rate of water uptake from the soil throughout the whole plant lifecycle. Under the rainfed wheat agro-system, grain-filling is typically occurring during declining water availability (i.e., terminal drought). Therefore, preserving soil water moisture during grain filling could serve as a key adaptive trait. We hypothesized that lower wheat root axial conductance can promote higher yields under terminal drought. A segregating population derived from a cross between durum wheat and its direct progenitor wild emmer wheat was used to underpin the genetic basis of seminal root architectural and functional traits. We detected 75 QTL associated with seminal roots morphological, anatomical and physiological traits, with several hotspots harbouring co-localized QTL. We further validated the axial conductance and central metaxylem QTL using wild introgression lines. Field-based characterization of genotypes with contrasting axial conductance suggested the contribution of low axial conductance as a mechanism for water conservation during grain filling and consequent increase in grain size and yield. Our findings underscore the potential of harnessing wild alleles to reshape the wheat root system architecture and associated hydraulic properties for greater adaptability under changing climate.


Plant Roots/anatomy & histology , Triticum/anatomy & histology , Triticum/genetics , Alleles , Droughts , Phenotype , Plant Roots/genetics , Quantitative Trait Loci , Seedlings/genetics , Seedlings/growth & development , Seeds/genetics , Seeds/growth & development , Triticum/growth & development , Xylem/genetics
15.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Article En | MEDLINE | ID: mdl-33536333

Mechanical impedance limits soil exploration and resource capture by plant roots. We examine the role of root anatomy in regulating plant adaptation to mechanical impedance and identify a root anatomical phene in maize (Zea mays) and wheat (Triticum aestivum) associated with penetration of hard soil: Multiseriate cortical sclerenchyma (MCS). We characterize this trait and evaluate the utility of MCS for root penetration in compacted soils. Roots with MCS had a greater cell wall-to-lumen ratio and a distinct UV emission spectrum in outer cortical cells. Genome-wide association mapping revealed that MCS is heritable and genetically controlled. We identified a candidate gene associated with MCS. Across all root classes and nodal positions, maize genotypes with MCS had 13% greater root lignin concentration compared to genotypes without MCS. Genotypes without MCS formed MCS upon exogenous ethylene exposure. Genotypes with MCS had greater lignin concentration and bending strength at the root tip. In controlled environments, MCS in maize and wheat was associated improved root tensile strength and increased penetration ability in compacted soils. Maize genotypes with MCS had root systems with 22% greater depth and 49% greater shoot biomass in compacted soils in the field compared to lines without MCS. Of the lines we assessed, MCS was present in 30 to 50% of modern maize, wheat, and barley cultivars but was absent in teosinte and wild and landrace accessions of wheat and barley. MCS merits investigation as a trait for improving plant performance in maize, wheat, and other grasses under edaphic stress.


Plant Roots/anatomy & histology , Soil , Triticum/anatomy & histology , Zea mays/anatomy & histology , Biomechanical Phenomena/drug effects , Ethylenes/pharmacology , Genome, Plant , Genome-Wide Association Study , Genotype , Lignin/metabolism , Phenotype , Plant Roots/drug effects , Plant Roots/ultrastructure , Quantitative Trait Loci/genetics , Spectroscopy, Fourier Transform Infrared , Triticum/drug effects , Triticum/genetics , Triticum/ultrastructure , Zea mays/drug effects , Zea mays/genetics , Zea mays/ultrastructure
16.
PLoS One ; 16(2): e0246880, 2021.
Article En | MEDLINE | ID: mdl-33571310

The current study involves the biogenesis of titanium dioxide nanoparticles (TiO2 NPs) by using Moringa oleifera Lam. aqueous leaf extract for the reduction of titanium dioxide salt into TiO2 nanoparticles. The biosynthesized TiO2 nanoparticles were observed by using the UV-visible spectrophotometry, SEM, EDX and XRD analytical methods. It was confirmed that the nanoparticles are crystalline and exist in the size range of 10-100 nm. The FTIR analysis confirmed the presence of O-H (hydrogen bonding), N-H (amide), C-C (alkanes) and C-I (Iodo-stretch) functional groups responsible for the stabilization of nanoparticles. Various concentrations (20, 40, 60 and 80 mg/L) of TiO2 NPs were applied exogenously on wheat plants infected with a fungus Bipolaris sorokiniana responsible to cause spot blotch disease at different time intervals. The measurement of disease incidence and percent disease index showed the time-dependent response and 40 mg/L was reported a stable concentration of TiO2 NPs to reduce the disease severity. The effects of biosynthesized TiO2 NPs were also evaluated for agro-morphological (leaf and root surface area, plant fresh and dry weight and yield parameters), physiological (relative water content, membrane stability index and chlorophyll content) and non-enzymatic metabolites (soluble sugar, protein, soluble phenol and flavonoid content) in wheat plants under biotic stress and 40 mg/L concentration of TiO2 NPs was found to be effective to elicit modifications to reduce biotic stress. The current study highlights the significant role of biosynthesized TiO2 NPs in controlling fungal diseases of wheat plants and thus ultimately improving the quality and yield of wheat plants.


Bipolaris/drug effects , Chemical Phenomena , Nanoparticles/toxicity , Titanium/toxicity , Triticum/anatomy & histology , Triticum/microbiology , Pest Control, Biological , Plant Diseases/microbiology , Spectroscopy, Fourier Transform Infrared , Stress, Physiological/drug effects , Triticum/drug effects , Triticum/enzymology
17.
PLoS One ; 16(1): e0244931, 2021.
Article En | MEDLINE | ID: mdl-33428646

Fungal pathogens exert severe qualitative and quantitative damages to wheat crop. Karnal bunt of wheat caused by Tilletia indica Mitra, Mundkur is a severe threat to global food security. Nonetheless, T. indica is regulated as a quarantine pest in numerous countries, which further aggravates the situation. Tolerant varieties and appropriate management practices for Karnal bunt are imperative to meet the global wheat demands. This two-year study explored the impact of fungicide [Fosetyl-Aluminium (Aliette)] application timing on allometric traits, disease suppression and economic returns of bread wheat. Four bread wheat cultivars differing in their tolerance to Karnal bunt were used in the study. Fungicide was applied as either seed treatment (ST), foliar application at heading (FAH) or ST + FAH, whereas no application (NA) was taken as control. Lasani-08 performed better than the rest of the cultivars in terms of allometric traits (plant height, leaf area, crop growth rate, photosynthesis, and chlorophyll content), yield and economic returns. Nonetheless, minimal disease severity was recorded for Lasani-08 compared to other cultivars during both years. The ST improved allometric traits of all cultivars; however, ST + FAH resulted in higher yield and economic returns. Cultivar Pasban-90 observed the highest disease severity and performed poor for allometric traits, yield and economic returns. It is concluded that ST + FAH of Fosetyl-Aluminium could be a pragmatic option to cope Karnal bunt of wheat. Nonetheless, Pasban-90 must not be used for cultivation to avoid yield and quality losses.


Bread , Organophosphorus Compounds/pharmacology , Triticum/drug effects , Triticum/growth & development , Plant Diseases/prevention & control , Triticum/anatomy & histology , Triticum/microbiology
18.
Planta ; 253(2): 44, 2021 Jan 22.
Article En | MEDLINE | ID: mdl-33481116

MAIN CONCLUSION: The function of SQUAMOSA PROMOTER-BINDING PROTEIN-BOX gene TaSPL14 in wheat is similar to that of OsSPL14 in rice in regulating plant height, panicle length, spikelet number, and thousand-grain weight of wheat, but differs during tiller development. TaSPL14 may regulate spike development via ethylene-response gene EIN3-LIKE 1 (TaEIL1), ETHYLENE-RESPONSIVE TRANSCRIPTION FACTOR 2.11 (TaRAP2.11), and ETHYLENE-RESPONSIVE TRANSCRIPTION FACTOR 1 (TaERF1), but not DENSE AND ERECT PANICLE 1 (TaDEP1) in wheat. The SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE gene OsSPL14 from rice is considered to be a major determinant of ideal plant architecture consisting of few unproductive tillers, more grains per spike, and high resistance of stems to lodging. However, the function of its orthologous gene, TaSPL14, in wheat is unknown. Here, we reported the functional similarities and differences between TaSPL14 and OsSPL14. Similar to OsSPL14 knock-outs in rice, wheat TaSPL14 knock-out plants exhibited decreased plant height, panicle length, spikelet number, and thousand-grain weight. In contrast to OsSPL14, however, TaSPL14 did not affect tiller number. Transcriptome analysis revealed that the expression of genes related to ethylene response was significantly decreased in young spikes of TaSPL14 knock-out lines as compared with wild type. TaSPL14 directly binds to the promoters of the ethylene-response genes TaEIL1, TaRAP2.11, and TaERF1, and promotes their expression, suggesting that TaSPL14 might regulate wheat spike development via the ethylene-response pathway. The elucidation of TaSPL14 will contribute to understanding of the molecular mechanisms that underlie wheat plant architecture.


Plant Proteins , Transcription Factors , Triticum , Gene Expression Regulation, Plant/genetics , Gene Knockout Techniques , Oryza/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Triticum/anatomy & histology , Triticum/genetics , Triticum/growth & development , Triticum/metabolism
19.
Int J Mol Sci ; 21(22)2020 Nov 19.
Article En | MEDLINE | ID: mdl-33228054

The Special Issue of "Wheat breeding through genetic and physical mapping" aimed to collect recent advances in research on the genetic and physical mapping of quantitative trait loci (QTLs), candidate genes and regulatory sequences involved in the control of wheat's important agronomic traits, such as grain yield and quality, biotic and abiotic stress resistance [...].


Edible Grain/genetics , Genome, Plant , Quantitative Trait Loci , Quantitative Trait, Heritable , Triticum/genetics , Chromosome Mapping/methods , Chromosomes, Plant/chemistry , Crosses, Genetic , Edible Grain/anatomy & histology , Edible Grain/growth & development , Genetic Linkage , Humans , Plant Breeding , Triticum/anatomy & histology , Triticum/growth & development
20.
Proc Natl Acad Sci U S A ; 117(46): 28708-28718, 2020 11 17.
Article En | MEDLINE | ID: mdl-33127757

Stem solidness is an important agronomic trait of durum (Triticum turgidum L. var. durum) and bread (Triticum aestivum L.) wheat that provides resistance to the wheat stem sawfly. This dominant trait is conferred by the SSt1 locus on chromosome 3B. However, the molecular identity and mechanisms underpinning stem solidness have not been identified. Here, we demonstrate that copy number variation of TdDof, a gene encoding a putative DNA binding with one finger protein, controls the stem solidness trait in wheat. Using map-based cloning, we localized TdDof to within a physical interval of 2.1 Mb inside the SSt1 locus. Molecular analysis revealed that hollow-stemmed wheat cultivars such as Kronos carry a single copy of TdDof, whereas solid-stemmed cultivars such as CDC Fortitude carry multiple identical copies of the gene. Deletion of all TdDof copies from CDC Fortitude resulted in the loss of stem solidness, whereas the transgenic overexpression of TdDof restored stem solidness in the TdDof deletion mutant pithless1 and conferred stem solidness in Kronos. In solid-stemmed cultivars, increased TdDof expression was correlated with the down-regulation of genes whose orthologs have been implicated in programmed cell death (PCD) in other species. Anatomical and histochemical analyses revealed that hollow-stemmed lines had stronger PCD-associated signals in the pith cells compared to solid-stemmed lines, which suggests copy number-dependent expression of TdDof could be directly or indirectly involved in the negative regulation of PCD. These findings provide opportunities to manipulate stem development in wheat and other monocots for agricultural or industrial purposes.


DNA Copy Number Variations , Plant Stems/anatomy & histology , Transcription Factors/genetics , Triticum/genetics , Genes, Plant , Plant Proteins/genetics , Triticum/anatomy & histology
...